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Early research on the above grant under the direction of the previous principal 
investigator, Professor Roger Davies, assisted in the design and validation of the inversion 
process for scanner data from the Earth Radiation Budget Experiment. This work was 
documented in references 1-3. More recent work at both Purdue and McGill Universities 
has concentrated on analysis of the scanner radiance data from both the E M S  and NOAA- 
9 satellites. This work has lead to the recognition of the major statistical dependences in the 
radiances data and the need for an unbiased sampling strategy to obtain accurate monthly 
mean radiation budgets. 

Research on the subject grant is best summarized in the attached thesis of Franqois 
Payette (reference 5) which was written under the supervision of Professor Davies at 
McGill University. Referenced in  this thesis is that of another M.Sc. student, Mr. 
Guoyong Wen, who was also supervised by Professor Davies (reference 4). A joint 
publication between Davies and Payette, summarizing the highlights of the thesis findings 
is currently in preparation and will acknowledge support under this grant number. 
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ABSTRACT 

The Earth Radiation Budget Experiment ( W E )  is the most recent 

and probably the most intensive mission performed in order to gather 

precise measurements of the Earth’s radiation components. The data 

obtained from ERBE will certainly be of great importance for future 

climatological studies. 

A statistical study reveals that the ERBE scanner data are highly 

correlated and that instantaneous measurements corresponding to 

neighbouring pixels contain almost the same information. Analyzing only 

a fraction of the data set when sampling is suggested and applications 

of this strategy are given in the calculation of the albedo of the Earth 

and of the cloud-forcing over ocean. 
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La mission ERBE (Earth Radiation Budget Experiment) est la plus 

recente et probablement la plus importante des missions spatiales ayant 

pour but de mesurer precisement l'intensite de la radiation reflechie et 

&mise par la terre. Les donnees fournies par ERBE seront certainement 

d'une grande utilite pour de futures etudes climatologiques. 

Une etude statistique revele que les donnees de ERBE provenant 

des instruments a haute resolution sont fortement correlees et que des 
mesures simultannees correspondant a des pixels voisins fournissent une 
information presque identique. Cette recherche suggere qu'une fraction 

seulement de l'ensemble des donnees soit anlysee et presente aussi en 

guise d'applications un calcul de l'albedo de la terre ainsi que du 

forcage radiatif dG a l'ennuagement au-dessus des oceans. 
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Chapter 1 

Introduction : the Earth Radiation Budget Experiment 

1.1 Net radiation and ERBE 

The treatment of radiation is an important aspect of climate 

modelling. The Earth receives shortwave (SW) radiation from the Sun 

which is partly reflected and partly absorbed by both the atmosphere and 

the planet surface. It also emits longwave (LW) radiation which is lost 

to space. On the average, the net radiative input, 6, can simply be 

written as 

b - -  s o  (1 - a )  - L 
4 

where 

and 

S o  is the solar constant 

o is the albedo i.e. the ratio of the reflected SW 

irradiance to the incident solar irradiance 

L is the outgoing LW irradiance emitted by the Earth and 

its atmosphere. 

On a global scale and over a large period of time (on the order of 

years), we would certainly expect 6 to be zero since during this period 

the Earth remains on the average in radiative equilibrium. But for 

regional studies the net incoming radiation is non-zero and it is this 

radiative input or output that drives the atmospheric and oceanic 

circulations. 

For the last 25 years, satellites (for example the Tiros and 

Nimbus series) have been used to study net radiative input (Stephens et 
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al., 1981 and Smith et al., 1986). At first more global studies were 

made, but with time more accurate measurements were needed over smaller 

regions (i.e. a better resolution) in order to perform more 

sophisticated studies. 

The Earth Radiation Budget Experiment ( M E )  was organized in 

order to obtain such measurements (c.f. Barkstrom, 1984). It is the 

first multisatellite system designed to precisely measure components of 

the Earth's radiation budget and it features an improved sampling 

procedure developed on the basis of the experience gained from the 

Nimbus 6 and 7 missions. 

The ERBE system is composed of three satellites : the Earth 

Radiation Budget Satellite (ERBS) and two NOAA satellites (NOAA-9 and 

-10). The orbital characteristics of the three satellites were chosen in 

order to maximize the amount of surface viewed and diurnal coverage, 

within budgetary and launch constraints. ERBS is a 57' inclination NASA 

satellite situated at an altitude of 600 kilometres and precesses 4.95' 

west per day (i.e. 180' in 36 days). The two NOAA satellites are 

respectively at altitudes of 870 km and 833 km and have inclinations of 

98.91' and 98.75' ; both are sun-synchronous. 

1.2 The ERBE instruments 

There are two instrument packages on each of the ERBE 

satellites : scanner and non-scanner radiometers. Each satellite also 

has calibration equipment on board. The non-scanner package contains 4 

Earth-viewing detectors and a solar monitor. There are 2 spatial 

resolutions : a limb-to-limb Wide Field Of View (WFOV) and a 1000 km 

2 



diameter Medium Field Of View (MFOV). Shortwave ( 0 . 5  to 5 pm) and total 

wavelength measurements are made at each of these spatial resolutions. 

Non-scanner measurements are taken every 0 . 8  seconds. 

The scanner package contains 3 Earth-viewing broadband channels : 

SW (0.2 to 5 pm) 

LW (5 to 50 pm) 

total (0.2 to 50 pm) 

The value of 5 pm for the wavelength was chosen to be a good point at 

which to separate solar and terrestrial radiation. 

The scanner instruments are mounted on a pedestal which rotates 

in the azimuthal direction and usually scans perpendicularly to the 

orbital track because this maximizes the spatial coverage (more complex 

scanning patterns were used with Nimbus 6 and 7). The instantaneous 

field of view (FOV) is hexagonal in order to decrease aliasing and is 

4.5' along satellite ground track and 3.5' wide. At nadir, the area 

viewed is : 

47 x 31 la for E M S  

65 x 44 km for the two N O M ' S .  

A complete scan including resetting for the next scan takes 4 seconds 

and contains 62 pixels. 

1.3 The measurements 

The ERBE measurements must be treated before being used for 

climate study purposes (see Smith et al., 1986). Initially they consist 

of raw data from thermometers which are subsequently converted to 

satellite altitude radiances in physical units. 

3 



The scanner and non-scanner instruments provide important but 

different types of information. The advantage of the non-scanner 

measurements is that they give a better idea of the global and regional 

outgoing flux density. The scanner measurements are much more useful 

because of the small resolution and the different viewing positions 

which allow a study of angular dependence of the physical quantities, 

but we need to infer a value of the flux from the measured radiance in 

order to study climatology. This can be done using the angular 

distribution function R, also called the bidirectional function for SW. 

It is defined as 

where I and F are respectively the radiance and the flux density which, 

for a matter of convenience, will simply be referenced by the term flux 

throughout the text, and where the subscript A indicates the wavelength 

range (SW or LW) . R gives an idea of the asymmetry of the radiation 

field ; if it is identically equal to one the field is isotropic. For 

the ERBE data, X was empirically determined using Nimbus 7 data as well 

as models derived from GOES and AVHRR data. 

One difficulty is to choose the correct X for the scene type the 

scanner is looking at. The problem is to identify this scene type. The 

ERBE data are classified according to 12 scene categories given in Table 

1.3.1. They include four divisions of cloudiness which are clear (0 to 

5% cloudiness), partly cloudy (5 to 50% cloudiness), mostly cloudy (50 

to 95% cloudiness) and overcast ( 9 5  to 100% cloudiness). As for the 
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TABLE 1.3.1 The twelve ERBE scene types 

Scene identification number Description 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

clear ocean 

clear land 

clear snow 

clear desert 

clear land-ocean mix 

partly cloudy over ocean 

partly cloudy over land or desert 

partly cloudy over land-ocean mix 

mostly cloudy over ocean 

mostly cloudy over land or desert 

mostly cloudy over land-ocean mix 

overcast 
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surface characteristics, they are easily determined knowing the 

satellite position and the geography. For the cloud coverage, use is 

made of Maximum Likelihood Estimators (MU). The basic assumption is 

that : 

clear skies are dark and hot 

cloudy skies are bright and cold. and 

The brightness is characterized by the SW measurements and the 

temperature is determined by the LW measurements. This means that in a 

SW versus LW graph of outgoing radiation such as Fig. 1.3.1, clear sky 

radiance measurements are going to appear in the lower left of the graph 

and overcast radiance measurements will tend to be found in the upper 

right part of the graph. To obtain the MLE, measured radiances are 

compared with surface observations and are then classified according to 

the 4 cloud cover types. In the figure, the dot indicates the mean 

values of SW and LW radiances for each type and the decision line is 

determined using standard deviations of the radiances for the different 

categories of cloudiness (see ERBE PAT users' guide, 1987). The x shows 

an example of a pair of measurements (SW and LW) that will be 

classified. There are several different MLE's, one for each of the 

scanner and Sun position categories. 

Problems are still encountered in the use of the bidirectional 

function 11. There is an important scatter of the data within a cloud 

category and it is still difficult with the MLE to distinguish between a 

few horizontally extensive stratiform clouds and many horizontally 

limited cumuliform clouds (Smith et a l . ,  1986). Theoretical derivations 

of 11 for cumulus- or stratus-like clouds might be useful since empirical 

6 
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FIG. 1.3.1 Graph of SW and LW outgoing radiances. The Maximum 

Likelihood Estimators are based on such graphs. 
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. .  

data for a good estimation of 8 would require a very high resolution of 

the satellite instruments. Some work has been done in that field 

(Davies, 1984). 

The main ERBE scanner data are the measured radiances, the 

estimated fluxes inferred from the bidirectional models and the scene 

identification. In the present study, only the unfiltered radiances are 

used. The filtered scanner radiance is the raw measurement corresponding 

to the integral over the SW or LW spectrum of the spectral radiance 

incident on the instrument weighted by the instrument spectral response, 

while the unfiltered scanner radiance is defined to be the same integral 

for a perfectly flat instrument spectral response. Either the SW or the 

LW unfiltered measurement is inferred from both the filtered SW, LW and 

total measurements using regression coefficients which are functions of 

directional angles, latitude and scene type (see ERBE PAT users’ guide, 

1987). 

1.4 Viewing angle dependence 

One of the major sampling problems for ERBE is the variation 

associated with viewing zenith angle. There are two important effects. 

First, from elementary geometry, we know that the area viewed 

increases with viewing angle. Figure 1.4.1 shows the surface ratio 

across satellite track versus the distance from the nadir point. The 

surface ratio is defined to be the ratio of the area viewed by the 

scanner instrument normalized by the same area viewed at nadir. Up to 

400 km ( e 40° from the satellite) the surface ratio is near 1 but 

increases rapidly afterwards. There is also a cutoff angle beyond which 
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FIG. 1.4.1 Surface ratio versus distance across satellite track for 

the Earth Radiation Budget Satellite (ERBS). 
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the Earth does not entirely fill the field of view. Measurements for 

viewing angles larger than this value (e.g. near 70' for ERBS) are 

rejected. 

The effect of cloud sides is also important. As the scanner goes 

towards large viewing angles it tends to classify broken cloud scenes as 

overcast scenes because it sees more of the cloud sides. This could 

affect the results obtained from analysis of the W E  data. 

1.5 Angle definitions 

Figure 1.5.1 defines the important angles mentioned in this work. 

All angles are defined at the target point. 8 is the zenith angle at 

which one sees the satellite and is called the viewing angle. 8, is the 

zenith angle indicating the position of the Sun and is called the solar 

zenith angle. Q is the azimuthal angle which is 0' when the Sun is ahead 

of the viewing position and 180' when the Sun is behind the viewing 

position. It is called the relative azimuth. 

The values of the cosine of 8 and 8 ,  are also used and symbolized 

by IJ and Po. 

The symbol A will be used to represent latitude with positive 

values of A corresponding to the northern hemisphere. 

1.6 The present study 

Comprehensive analysis of the ERBE data presented in the previous 

sections is expected to yield interesting results regarding, for 

example, radiation budgets, symmetry of the radiation field or cloud- 

forcing. Since ERBE is an intensive and recent mission providing various 

10 



FIG. 1.5.1 Geometry characterizing the ERBE data. 
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. .  
measurements, one could be tempted to directly analyse the whole of the 

data in order to obtain such results. Before proceeding on such a task, 

however, it is of considerable interest to examine an initial subset of 

the data to determine its information content in a statistical sense, as 

well as its self consistency in terms of validation. An understanding of 

the statistical dependence of the data is in fact a prerequisite to 

determining an optional sampling strategy for obtaining monthly averages 

and for assessing the uncertainty in such averages due to both natural 

variability and potential biases in the inversion technique. 

Consequently, this study is first directed towards an analysis of 

the E W E  data from a statistical point of view. In Chapter 2 we examine 

the correlation of the data and then develop a sampling strategy. This 

is applied in Chapter 3 to the study of climatological quantities such 

as the albedo and the cloud-forcing, mainly to observe the variability 

of the data and a possible dependence of these quantities on certain 

parameters. 

The data used in this research are the diurnal unfiltered SW and 

LW radiances, the related estimated SW and LW fluxes and the scene 

identification numbers from EMS and NOAA-9 for the monch of April 1985. 

Data from ERBS November 1984 are also used. 

12 



Chapter 2 

Correlation study 

2.1 Statistical dependence of the ERBE data 

Statistical independence is often assumed when applying 

classical statistical theory to scientific results. The value of a 

single datum is then considered not to be influenced by any other data 

and, conversely, it is assumed that this datum will not influence any 

other data value. For instance, this is usually the case when several 

length or time measurements are taken to estimate the value of a 

distance or a period of time. A set of results of the heads or tail game 

is also a classical example of an independent data set. But we could 

also think of a simple experiment where the results are not independent 

of each other. When, for example, one is outside and looks directly 

overhead to see if there are clouds, it is likely that he will get the 

same answer if he was to look at 45' above the horizon in front of him. 

These two observations are certainly dependent since cloudy areas are 

usually large. Such data sets cannot be treated with normal distribution 

stat ist ics .  

The earlier results of Wen (1987) showed that the ERBE scanner 

data cannot be considered as if they were statistically independent. His 

experiment has been repeated, confirming his results. He first divided 

the data according to viewing angle, solar zenith angle, latitude bins, 

and scene types, and then calculated the mean values of the radiances 

for each category for a set of 10 days of ERBS April 1985 data. These 

days were homogeneously distributed within the month so that he would 

13 



pick one day out of three consecutive days (e.g. the l't, 4 t h ,  7 t h ,  

etc... of April). He then repeated this procedure twice for 10 other 

days of the same month thus obtaining three values of mean radiance for 

each category. He then compared the 3 absolute differences, A m ,  between 

the means of a category to the expected error of the mean u / h  of that 

data category ( u  is the standard deviation and N is the number of data). 

If the data were totally independent, a normal distribution would be 

observed and 95% of the differences A 6  - 2 a / h  for all categories would 

be negative, which is to say that 95% of the differences of the means 

would be within two standard deviations of the mean. 

Table 2 . 1 . 1  shows the results based on EMS April 1985 data. For 

each of the physical quantities studied (radiance or estimated flux), a 

mean value of 6 - Am - 2 a / h  over all cases, 6, is presented with the 

number n(+) of cases where this difference is positive and the number 

n(-) of negative cases. The values of s give an idea of the departure of 
the Am's from the standard error. It clearly shows that a is positive 
most of the time (at least 74% of the cases), and the data are not 

normally distributed. This leads us to think that the data are highly 

correlated and that the number of data N, even of the order of several 

thousands, is not large enough to invoke normal distribution statistics. 

Tables 2 . 1 . 2  and 2 . 1 . 3  show similar results based on ERBS November 1984 

data and NOAA-9 April 1985 data respectively. From these three tables, 

it can be observed that the relative values of a for the radiances 
correspond to the relative values of a for the estimated fluxes. This 
suggests that a high variability in one of these two quantities implies 

a high variability in the other. Furthermore, it can be seen that the LW 

- - 
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TABLE 2.1.1 Mean values of 6 - AG - 20/fi, n(+) and n(-) for the SW 
and LW radiances and estimated fluxes. SW are divided according to solar 

zenith angle, viewing angle and latitude bins as well as scene type 

while LW are divided according to viewing angle and latitude bins only. 

Data are from ERBS April, 1985. 

- 
6 (in 

n(+) 

n(-) 

2.67 

500 
99 

1 . W  F. )I 11 w Fl w 

1.24 3.99 0.33 1.04 
318 320 115 114 
114 112 20 21 

6.94 0.39 1.14 
512 83 85 

87 23 21 

TABLE 2.1.2 Same as Table 2.1.1 for ERBS November, 1984 data. 

1.57 4.80 0.52 1.60 
497 491 85 84 
117 123 12 13 

TABLE 2.1.3 Same as Table 2.1.1 for NOAA-9 April, 1985 data. 
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- 
6's are smaller than the SW a ' s  since the variability of the SW data is 

more important. Lower values of the b's f o r  NOAA-9 indicate less 

variability in the data from that satellite. 

Direct examination of the ERBE data also reveals statistical 

dependence. Figure 2.1.1 gives the mean value of the SW radiance versus 

the number of data N from the EFtBS April 14th, 1985 data set; The 

radiances are for 0' I 8 I lSO, 0' I 8 ,  I 25.8', all Q and latitudes 

Oo I A I 30' N and are taken consecutively. The + sign represents the 

mean value of Isw at each value of N being a multiple of 10. The solid 

line shows the percentage of the last 10 data added to the mean that 

were overcast ( 9 5 %  to 100% cloudiness) and the dashed line shows a 

similar percentage for the clear ocean scenes (0% to 5% cloudiness). The 

first 100 data are dominated by clear sky data and Isw has a low value 

(about 40 W m-2 sr"). The first sign of overcast data appears after 

N = 200. Tsw increases by 15 W m-2 sr-' when adding only 50 new data. 

From N = 360 to N - 580 all consecutive data correspond to overcast 

scenes and I,, doubles by increasing steadily. For N larger than 600 the 

mean tends to stabilize only because the satellite is viewing a large 

partly cloudy area. Even for over 1300 data, Isw can still fluctuate 

when the high values of overcast SW radiances are encountered. The value 

of I,, eventually stabilizes for N greater than several thousand. 

- 

This figure clearly shows that the data are statistically 

dependent. Picking up as much as a hundred consecutive data is not 

enough to determine the real mean value of the physical quantity 

measured by the satellite, even if their standard deviation u is small, 

because all the data can represent the same type of target. 

16 
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FIG. 2.1.1 Mean value of the SW radiance and frequency of occurrence 
of the clear ocean and overcast scene types. Data are from ERBS April 
the 14th, 1985 and for 0' I 8 I 15 0 0  0 I 8, I 25.8' and 0' I A I 30°N. 
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2 . 2  Autocorrelation versus distance 

From the preceding section it was shown that taking several 

consecutive satellite radiance measurements does not necessary lead to 

the right value of the mean of the physical quantity studied because the 

measurements, being strongly dependent, are similar. It would seem that 

it is not useful to pick up two consecutive data since they generally 

contain similar information. This observation suggests that uniformly 

sampling the data set in order to collect a fraction of it would lead to 

the same results as if all the data were taken. Separation between data 

would tend to give them a statistically independent behaviour. Applying 

that strategy would also reduce computer time and memory space used 

during processing. 

A study of the autocorrelation versus physical distance on the 

Earth's surface was therefore conducted in order to find a quantitative 

separation between two satellite measurements so that they become more 

independent. Let us define an arbitrary path X on the Earth's surface 

characterizing the position of the measurement M(X). If D is the 

distance separating the pairs of measurements to be studied, the linear 

autocorrelation coefficient is defined as 

o(X , X + D R(D) = a ( X )  o(X + A) ( 2 . 1 )  

where a ( X  , X + D) is the covariance defined as 

18 



and where o(X)  is the standard deviation defined as 

The absolute value of R is never larger than 1 and R is positive for 

correlated data pairs, negative for anticorrelated pairs and zero for 

totally uncorrelated data. R is calculated for different values of the 

separation distance D and is plotted for different categories of data 

sets. 

The study is done for the ERBE scanner radiance measurements 

which are classified according to wavelength, e,, 4 ,  and h bins. 

Wavelength bands are SW and LW ERBE broadbands, solar zenith angle 8, is 

divided in 10 equal p, bins such that bin number 1 is for 0.9 5 p o  5 1.0 

or 0' I 8, I 25.8 '  , etc.. , This is done because the solar input depends 

on p,. Relative azimuth #I is divided in three categories : "Sun in 

front" for 330' 5 4 I 360' or Oo 5 #I 5 30' (forward scatter), "Sun in 

back" for 150' I 4 5 210°, "Sun on sides" for 30' 5 4 S 150' or 

210' 5 4 5 330'. There are four categories for the latitude h : low- 

latitudes for 0' I A I 30' North or South and mid-latitudes for 

30' I A 5 60' North or South. A better latitudinal resolution is used 

for some LW studies and will be described later. 

The linear correlation coefficient R is plotted against distance 

along or across satellite track defined as follows. The satellite track 

is the intersection of the plane containing the satellite orbit with the 

Earth's surface or, in other words, the path the satellite generates 

when looking directly towards the centre of the planet. The distance 
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along-track is then defined to be the distance on the Earth separating 

two points on the satellite track or on a path parallel to it. 

Calculation showed that two consecutive ERBS or NOAA-9 satellite data 

lying along-track are separated by 27 kilometres on the Earth's surface. 

This along-track separation shows little variation up to viewing angles 

of the order of 45'. 

The distance across-track is defined to be the distance 

separating two points on Earth lying on a path perpendicular to the 

along-track direction i.e. the path the scanner instrument is looking 

at. This scanline contains 62 pixels that are not uniformly separated 

because of the curvature of the Earth. For ERBS, calculation gave a 

separation value of 22 kilometres for two consecutive across-track 

pixels at a viewing angle of 0' up to a value of 40 kilometres for a 

viewing angle of 45'. For NOAA-9, since its altitude is higher, this 

separation is larger and varies from 32 to 60 kilometres for a viewing 

angle varying respectively from a value of 0' to 45'. 

The next sections will present results of the autocorrelation 

coefficient R versus distance along- or across-track. 

2.2.1 Results from ERBS April 1985 data 

Results presented in this section are restricted to 

0' I e, 225.8' (or 0.9 2 p o  S l.O), 9 being for the "Sun on sides" case 

and to 0' 2 h S 30' N. There are five days of data processed (the 16th 

to the 20th of April). 
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a) R along- track  dependence on viewing angle 

Figure 2.2.1 shows the correlation coefficient R along-track 

versus viewing angle, negative angles corresponding to the scanner 

results to the right with respect to the satellite motion. The upper 

solid and dashed lines show these correlations for the 1'' and 4th 

neighbour i.e. for the. pairs of data that are 1 or 4 scanlines apart. 

The lower dashed line recalls the shape of the surface ratio defined 

earlier. 

It is clear from that figure that the value of R along-track 

increases with viewing angle. This effect could be explained by the fact 

that the dependence of the angular distribution function on cloud 

geometry weakens with increasing viewing angle up to a value of 0 - 60' 
(Davies, 1984). Consequently, measurements taken at larger viewing 

angles will tend to be more similar hence an increase in the value of R 

with 0 .  This dependence could also be due to the increasing area viewed 

with viewing angle but it is not obvious since the effect takes place 

even for small values of the viewing angle where the variation of the 

surface ratio is not too important. This effect was observed using any 

SW or LW data from either ERBS or N O M - 9  data s e t s .  

b) R along- track  for SW and Lw 

Figure 2.2.2 shows the correlation coefficient R versus the 

along- track distance for the 31' radiance measurements of a scanline 

i.e. near 0 = Oo. The solid line is for the SW data and the dashed line 

is for the LW data. 

Two important observations can be made. Data separated by a 

distance of about 2000 km seem to be uncorrelated. This is not too 
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FIG. 2 . 2 . 1  SW autocorrelation coeff ic ient  along s a t e l l i t e  track and 

surface ratio versus viewing angle. Values of R are given on the l e f t  y-  

axis and values of S are given on the right y-axis .  Data are from ERBS 

April the 16th  to the 20th, 1985 and for Oo S 8 ,  I 25.8O, Sun on sides 

and Oo I A I 30°N. 
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FIG. 2.2 .2  SW and LW autocorrelation coefficients for the 3 l S t  scan 

measurements versus distance along satellite track. Solid line is for SW 

and dashed line is for LW. Data are from ERBS April the 16th to the 

20th ,  1985 and for 0' I 8 ,  S 25.8', Sun on sides and 0' I A I 30'N. 
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surprising since this value is of the order of magnitude of the synoptic 

scale. It is also clear that the SW measurements decorrelate faster than 

the LW measurements, the value of R reaching 0.5 at a distance of 3 7 0  km 

for SW and 7 4 0  km for LW. This is due to the fact that the reflection of 

SW radiation depends on a larger number of degrees of freedom than the 

LW emission. The LW radiation depends mostly on temperature and cloud 

versus no-cloud state while the SW reflected radiation can depend on 

surface type and cloud type as well. The reflection of the SW radiation 

is complex because the distance to which this radiation penetrates a 

scattering and absorbing medium before being absorbed is much greater 

than for the LW radiation (Coakley and Davies, 1986). Furthermore, since 

clouds can have different shapes and sizes and can contain different 

populations of water and/or ice droplets, one can easily imagine that 

the probability of two separate SW radiance measurements being similar 

is smaller than for two LW measurements ; hence the faster decorrelation 

for SW coefficient R.  

C> R across-  track f o r  the SW and Lw 

Figures 2 . 2 . 3  and 2 . 2 . 4  represent R against the across-track 

separation distance. Again the solid line is for the SW data and the 

dashed line corresponds to the LW data. 

The origin of the coordinates in Fig. 2 . 2 . 3  is chosen to be at 

the 3 l S t  measurement of a scanline. Again it can be observed that SW 

radiance measurements decorrelate faster than the LW measurements with 

R - 0.5 at a distance of 250 km for SW and 640 km for LW. In this figure 
the tails of the across-track correlation curves are different from the 

previous along-track ones. They show less tendency to reach the zero 
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FIG. 2.2.3 SW and LW autocorrelation coefficients from the 3lSt scan 
measurements versus distance across satellite track. Solid line is for 

SW and dashed line is for LW. Data are from ERBS April the 16th to the 

20th, 1985 and for 0' I 8 ,  I 25.8', Sun on sides and 0' I A I 30'N. 
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FIG. 2 . 2 . 4  Same as Fig. 2.2.3 with the autocorrelation coefficients 

from the 55th scan measurements. 
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line. The explanation comes from the fact that, as the scanner 

instrument looks away from nadir, the area viewed becomes larger. 

Consequently, the measurements on a same scanline far away from 

satellite track will tend to be similar hence a smaller slope at the 

tail of the across-track R curve. 

This is in agreement with what is shown in Fig. 2 . 2 . 4 .  It is 

similar to the previous one 

be at the 5Sth measurement 

scanline from the satellite 

are towards nadir where the 

except for the origin which is now chosen to 

of a scanline (i.e. the left wing of the 

point of view). The left tails of the curves 

area viewed does not vary much with viewing 

angle and we observe it reaches smoothly the zero line. The peak of that 

figure is also wider than the peak of Fig. 2.2.3 again because adjacent 

data away from nadir tend to be more similar due to the larger area 

viewed. R now reaches 0 . 5  at distances of 480 km and 320 km respectively 

to the right and to the left of the peak, the larger value of these two 

correlation distances pointing towards the direction of larger area 

effect. 

d) Comparison between along- and across-track SW R 

Figure 2.2.5 shows both the along- and across-track SW R against 

distance with respectively the solid and dashed line. One more day of 

data (April 2lSt) was added to reduce noise in the tail part of the 

across-track R curve. The distance to half correlation where R - 0.5 is 
now 280 km, a value less than the one from the previous along-track R 

curve but still within the uncertainty of the curves (see the discussion 

on the uncertainty in section 2.2). The two curves are extremely similar 

up to 600 km where the surface ratio begins to increase rapidly (see 
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FIG. 2 . 2 . 5  SW along- and across-track autocorrelation coefficients 

from the 31nt  scan measurements versus distance. Solid line is for 

along-track R and dashed line is for across-track R. Data are from ERBS 
April the 16th to the 2 1 m t ,  1985 and for 0' I 8, I 25 .8 ' ,  Sun on sides 
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FIG. 2 . 2 . 6  Same as Fig. 2 . 2 . 5  with the autocorrelation coefficients 

from the lS th  scan measurements. 
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Fig. 1.4.1). Afterwards the across-track R curve has a higher value than 

the along-track one. This could be due to statistical noise or to the 

area effect on the across-track R curve. Looking at Fig. 2.2.6 

reinforces the conclusions from the previous figure. It shows again the 

along- and across-track SW R but this time from the 15th scan number 

(right wing of the scanline from the satellite point of view). The 

across-track R curve is directed towards nadir where the area viewed is 

about the same for two adjacent across-track pixels. We observe now that 

the two curves are extremely similar everywhere. The distance to half 

correlation for the two curves is larger in this case (s 320 km) because 

the area effect is more important near the lSth scan measurement. 

It is believed that, for the latitude band studied, the 

autocorrelation coefficient along-track R is similar to the across-track 

R for viewing angles not too large ( 0  5 50'). It is not sure that this 

conclusion would still stand if smaller equatorial regions were studied 

because, in that case, zonal phenomenon like the Inter-Tropical 

Convergence Zone (I.T.C.Z.) could change the correlations. 

e) Variation of the along-track R with latitude 

Along-track R for the 3 l S t  scan measurement was studied for 

different latitudes. Figure 2.2.7 gives the value of R versus h for 27,  

108, 540 and 1512 kilometres of along-track separation distance 

corresponding respectively to the upper, middle and lower curves. The 

number of latitude bins was doubled for a better resolution (now each 

15' latitude bands from the equator). The correlation seems a bit higher 

for the mid-latitudes at constant separation distance. This is possibly 

explained by the fact that the sub-tropical highs are found near 
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FIG. 2.2.7 LW autocorrelation coefficient along satellite track for 
the 31' scan measurements versus latitude. Results are for along- track 

distances of 27, 108, 540 and 1512 km. Data are from ERBS April the 16th 

to the lgth, 1985 and for all 6, and all 6. 
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30' North and South so that these regions are much more cloud-free, 

increasing the correlation between neighbouring pixels. 

f) Varying solar zenith angle 

Previous results are all for 0.9 I p o  S 1.0 (i.e. 

0' I 8 ,  I25.8'). A comparison with another solar zenith angle bin is 

made on a short along-track separation distance in order to verify if a 

complete different behaviour is observed. Figure 2.2.8 shows R along- 

track for the SW data corresponding to two different 8 ,  bins. The solid 

line is for 0.9 I p, I 1.0 (0' 5 8, 5 25.8') and the dashed line is for 

0.7 I p, 50.8 (36.9' I O ,  S 45.6'). Sun is on sides. No important 

differences are observed. 

g) Varying the relative azimuth 

Changing the relative azimuth #I did not seem to affect any 

correlation coefficient curve studied. This indicates that for large 

data sets, the results are statistically homogeneous with respect to 9. 

This is also in agreement with results for the albedo shown in a report 

to the 23rd ERBE team meeting by E. Ahmad and V. Ramanathan. 

2 . 2 . 2  Results from ERBS November 1984 data 

An autocorrelation study was also made for 5 days of the ERBS 

November 1984 radiance measurements. The main observations are presented 

here. As before, only the results for 0.9 I p o  5 1.0 and for Sun on 

sides are shown. Latitude is now 30's I A I 30°N to increase data 

volume. 

Figure 2.2.9 illustrates the value of R against along-track 

separation distance for the November SW and LW measurements. The 
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previous conclusion that the SW along-track R decorrelates faster than 

the LW along-track R still stands for the data of that month. It is also 

verified for the across-track SW and LW R. 

A comparison between ERBS November 1984 and April 1985 results 

for R along-track is presented in Fig. 2.2.10. The distance to half 

correlation for November .SW data is 220 km, a value slightly smaller 

than the April value, and is 400 km for the LW data, a value much 

smaller than the April one. For overhead Sun position in low-latitude 

regions, the November data appear to decorrelate faster than the April 

ones, but because of the statistical uncertainty of the curves this 

difference may not be significant. 

2.2.3 Results from NOM-9 April 1985 data 

Radiance measurements from another ERBE satellite were also 

studied. Since NOM-9 is a sun synchronous satellite, not every Sun 

angle is available for the low-latitudes. For that reason, the results 

shown are for 0.7 I p o  I 0.8 (36.9' i 0 ,  i 45.6'), Sun on sides and 

30's i h I 30°N. 

The first important observation is presented in Fig. 2.2.11 where 

the values of SW and LW R along-track for the 3gth scanline measurements 

are plotted versus separation distance. The SW R curve decreases more 

rapidly than the LW R curve as observed earlier with the ERBS data, the 

distance to half correlation now being 280 km and 360 km respectively 

for SW and LW, but the difference between these two curves is smaller 

than the difference between the same curves from ERBS data set. An 

explanation was not found but a similar observation has been made for R 

36 



NOAA-9 APRIL 1985 

1 .0  

8.9 

0.a 

8.7 

0.6 

0.5 

0 . 4  

0 . 3  

DISTANCE (in km) 

FIG. 2.2.11 SW and LW autocorrelation coefficients for the 3gth scan 

measurements versus distance along satellite track. Solid and dashed 
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across-track. 

Another important observation is that for almost the same days of 

April 1985, the SW and LW NOAA-9 data decorrelate more rapidly than the 

ERBS data. Figures 2.2.12 and 2.2.13 show respectively the SW and LW R 

along-track curves for NOAA-9 (the solid line) and for ERBS (the dashed 

line). Difference in the values of the distance to half correlation is 

of the order of 80 km for SW and 170 km for LW. Statistical noise in the 

curves could explain this difference since a physical explanation is 

hard to find. 

2 . 3  Uncertainty in the autocorrelation curves 

The autocorrelation curves presented earlier are surely subjet to 

statistical noise. Estimation of the uncertainty in the curves could 

certainly reinforce or weaken some conclusions. Two different approaches 

to estimate this uncertainty are discussed here. 

The classical statistical theory provides a first method. It 

consists in calculating a kind of standard deviation from the 

statistical data used to derive the autocorrelation coefficient R. This 

standard deviation is then considered to be the standard error. Using 

the same definitions as in Section 2.2, it is given as 

e -  

11 2 

( 2 . 4 )  
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where N is the total number of data. The origin of this expression will 

not be explained here and can be found in the literature 

(Edwards, 1979). The problem with this formula is that it can only be 

used with statistical independent data sets like most of the formula 

given by the classical theory. Since ERBE data used to calculate the 

coefficient R are highly correlated, great care must be taken when 

interpreting the value of e. The complete summations were used but the 

value of (N - 2) was changed. From the previous graphs, it can be seen 

that two sets of data separated by about 1000 km have a correlation 

below 0.2. A jump of 40 consecutive data for a certain scan measurement 

number gives approximately that distance. So the formula for the error e 

was used with (N/40 - 2) instead of the (N - 2) factor. 

The calculated results for e that are related to the graphs 

presented in this chapter vary from less than 0.01 to 0.04 at worst, the 

larger values always corresponding to the end part of the curve's tail. 

All LW curves have e less than 0.025. 

This method is possibly not adequate since the data used are 

strongly dependent. 

Another very simple method to use is to examine the differences 

between two curves representing the same type of data. Figure 2.3.1 

shows that experiment for NOAA-9 April data with 36.9, I 0,  I 45.6', Sun 

on sides and 30°S I h I 30°N. The solid line is for the llth up to the 

18th of April while the dashed line is for April lSt to April 8 t h .  The 

comparison shows a difference of 0.02 at worst for a separation distance 

less than 600 km, a value of the order of magnitude of the results from 

the previous calculations. 
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’ .  
These two methods give at least an idea of the amplitude of the I 

I 

statistical noise of the autocorrelation coefficient curves presented in 

this chapter. 

2.4 A sampling strategy 

. The purpose of the present chapter was to characterize 

quantitatively the statistical dependence of the ERBE scanner data. This 

was accomplished with the use of the autocorrelation coefficient R. It 

was shown that measurements of adjacent pixels are highly correlated 

i.e. very similar and a suggestion was to take only measurements that 

are separated by a certain distance on the Earth’s surface in order to 

give the data a better statistically independent behaviour. The problem 

is now to find that distance. 

One possibility could be to choose the separation distance at 

which the data are totally uncorrelated i.e. where R approaches zero. It 

is generally of the order 2000 kilometres. But this corresponds to an 

extreme case and loses information because R does not reach zero sharply 

but reaches it very smoothly. 

The half value of 0 . 5  for R could determine the separation 

distance we are looking for, but a more general procedure is to choose 

that distance that separates the area under the R curves in two equal 

parts. This distance is generally between 300 km and 400 km for SW. For 

LW, it varies from 400 km to 600 km. For the ERBS April 1985 data 

package, which will be studied in Chapter 3 ,  this separation distance is 

close to 400 km for SW corresponding approximately to a jump of 16 

consecutive scanlines ( 4  PAT records). Figure 2.4.1 shows the mean value 
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of the radiances 1," against the number of data for a partly cloudy 

ocean scene in April. Data have been collected by jumping 16 scanlines. 

The mean stabilizes rapidly and is well defined for N larger than 100. 

Comparison with Fig. 2.1.1 is interesting. 

It seems a jump of 16 scanlines is appropriate to avoid 

redundancy of the SW data in order to collect a considerably smaller 

data volume without losing too much information. Since it is mostly the 

SW data that will be studied in Chapter 3 ,  the same jump is used for LW 

in order to pick SW and LW data at the same time. Results of data 

analysis using this sampling strategy are presented in the next chapter. 
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Chapter 3 

Scanner data analysis 

Having a better resolution than the non-scanner instrument as 

well as providing data for different viewing angles, the ERBE scanner 

instrument is useful for climatological studies. Applications of the 

ERBE scanner data and the sampling strategy discussed in Chapter 2 are 

presented in this chapter. The data used are from ERBS November 1984 and 

April 1985. As suggested at the end of the previous chapter, 

measurements are separated by 16 consecutive scanlines or about 430 

kilometres. 

At first, the diurnal LW measurements are studied since, from Wen 

(1987), they show much less variability than the SW measurements. A 

greater attention was given to the SW data analysis. 

3.1 Longwave results 

3.1.1 LW radiances 

LW radiation depends mostly on cloudiness and on temperature, 

which is related to latitude, and is usually not far from being 

isotropic. For that matter, the LW radiances from 10 consecutive days of 

ERBS April 1985 data set were binned according to the cosine of the 

viewing angle 8 ( p  - cose) and latitude A so that a study of the 

dependence of IlW on p can be made for certain latitude bands. p is 

divided into 7 bins, 6 being equal for 0.4 I p I 1.0 (0' I 8 I 66.4') 

with Ap - 0.1 and the 7th bin representing 0 I p 10.4 ( e  I 66.4'). The 

latitude h was divided into 10' bands starting from the equator. 
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Figures 3.1.1 and 3.1.2 show the values of ylw*F against the mean 
p of each viewing angle bins for respectively the 0' - 10' N and the 

30' - 40' N latitude bands. The vertical bars give the value of one 

standard deviation of the mean ( o / h )  on each side of the curves. 

Sampling in e was homogeneous since equals the mid-value of each 8 

bins except the very last. one because of the cutoff angle, 

- 

The curves are very well behaved and show an almost perfect 

linear decrease towards zero. The linear behaviour is an indication of 

isotropy in the LW radiation field for viewing angles not too large 

( e  S 70') since limb darkening could be observed if satellite scanner 

data were available for very oblique viewing positions. 

3.1.2 LW integrated versus estimated fluxes 

The ERBE data package provides estimated values of the LW flux 

based on the radiance measurements and the directional models. The 

integrated flux is defined to be the value of the flux obtained by 

integrating the radiances over viewing angle and can be easily 

calculated for each latitudinal band using 

where the index i is for the 7 viewing angle bins. 

Figure 3.1.3 gives the mean values of the integrated and 

estimated fluxes for each of the 10' latitude bands. Integrated flux 

could not be calculated for the two 60' - 70' North and South bands 

because no nadir radiances are available from ERBS for these regions. 
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LATITUDE ( i n  degrees from Nor th  t o  South) 

FIG. 3.1.3 Integrated and estimated LW fluxes versus latitude. The x 

sign is for integrated flux while the o sign is for estimated flux. Data 

are from ERBS April the lst to the loth, 1985 and for all 0, and all 4 .  
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LW fluxes given by curves in Fig. 3.1.3. 
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The curves reach two maxima of about 270 near 20° North and 

South. This value drops at 235 Wm-* near the equator because of the 

higher cloudiness. 

An important conclusion is the fact that the integrated and the 

estimated flux curves are almost identical. Figure 3.1.4 shows the 

difference 

for each latitude band. The absolute difference is never larger than 

3.5 Wm-* and is maximum near maximum fluxes. The relative difference 

is of the order of 1%. Since the radiances are direct satellite 

measurements and since they have shown a very uniform behaviour, much 

confidence is given to the integrated fluxes. The fact that the 

estimated fluxes are within 1% of the value of the integrated fluxes 

suggests that the LW directional models are very good and that the LW 

fluxes can be obtain directly by taking their ERBE estimated values. 

3.2 Shortwave results 

3.2.1 SW radiances 

The reflected SW radiation depends on more parameters than the LW 

emission and is hence expected to show, in agreement with the 

correlation results, much more natural variability than the LW 

radiation. It also depends much more on Sun position, i.e. e,, than on 

the latitude A. For that reason, the SW data are divided into viewing 
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- .  

angle and solar zenith angle bins in the following way : 10 equal p, 

bins from p, = 1 to p, - 0 and 7 equal p bins from p = 1 to p = 0.3 near 

where the cutoff angle occurs. Calculation for each 0 and 0, bins were 

made for the values of F, the mean of cos0 ; I, the mean of the SW 
radiance ; Ip, the mean of the product of I and p and for F e l t ,  the mean 
of the estimated SW fluxes related with the radiance measurements. Data 

were taken from 10 days of ERBS November 1984 and April 1985 data sets 

and were collected on alternate days to avoid redundancy and to study a 

large enough range of solar zenith angles. 

- 

- 

One of the first questions to arise was whether or not the 

product of the mean of I and p is equal to the mean of the product Ip. 

The answer to that question is interesting because it gives an idea of 

the homogeneity in the viewing angle samples and because it also shows a 

possible scatter of the product of I with p within a 8 bin (remember 

that the covariance is given by u = xy - x-y). Figure 3.2.1 gives an 

example of and versus p. The two curves perfectly overlap. This 

is also true for each of the other data sets studied. 

- - -  
X Y  

The next results are given in a series of graphs representing 

three physical quantities inferred from ERBE SW data versus viewing 

angle. These quantities are the product Ip which will be used to 

calculate the integrated SW flux, the value of the radiance 7 and the 

value of the normalized estimated flux (i.e. the estimated mean 

radiance) defined as 

- 
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which gives the uniform value of the radiance of an isotropic radiation 

field having a flux FeSt. Figures 3.2.2 to 3.2.6 are related to April 

data. They show results for five different ranges of solar zenith angle 

e,, from overhead position (0.9 I p o  51.0) to a near horizon position 

(0.1 I p o  5 0.2). In each graphs, the upper solid and dot-dashed curves 

are for and itest respectively while the lower curve is for Ill. Error 
bars are shown which are given by one standard deviation of the mean on 

each sides of the different curves. 

The curves for Fpresent very little statistical noise and are 

quite smooth for every Sun positions. They are extrapolated with a 

parabola passing through the origin and the last two data points in 

order to provide a complete set of values of for each Ap = 0.1 

viewing angle bins so that an integrated SW flux can be calculated. For 

overhead Sun (Fig. 3.2.2) the value of near nadir show a strong 

backscatter of the reflected SW radiation. For the other four Sun 

positions, the curve is smooth and has downward curvature. 

The values of and can also be compared. Since 

n I  
F.*t - - x 

where R is the bidirectional function, 

I 
=b R -  

F'est 
9 

(3.5) 

(3.6) 

and the ratio of I to F ' e s t  gives the value of the bidirectional 

function 2 .  For overhead Sun (Fig. 3.2.2) it is not far from 1 because 
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of the symmetry of the illumination, but for the inclined Sun positions 

it can be observed that the radiation field is anisotropic with higher 

values of the radiance occuring at large viewing angles. This is due to 

the cloudy or partially cloudy scenes since cloud sides tend to reflect 

more radiation than the cloud tops.  

. It can also be noted that F'est has a weak but persistant 

tendency to increase with 8.  If the bidirectional function R was 

perfect, the Ftest curve would remain flat with viewing angle. 
Similar results for November 1984 are presented in Figs. 3.2.7 to 

3.2.11. As for April, the curves for Ip are smooth. Again, for the 

overhead Sun position (Fig. 3.2.7), backscattered SW radiation is 

observed. The curves for T and Ftest show a similar behaviour to the 
previous April results. The value of 11 is also close to 1 for overhead 

Sun position while indicating an asymmetric SW radiation field with the 

larger radiances at large viewing angle for the other oblique Sun 

positions. The only exception concerns Fig. 3.2.8 (36.9' 5 e, s 45.6') 

where reaches its maximum near 8 - 50'. The values of the estimated SW 

fluxes still show a slight tendency to increase with viewing angle. 

- 

3.2.2 SW integrated versus estimated fluxes 

An interesting experiment is to compare the integrated fluxes 

calculated from the ERBE scanner SW radiance measurements with their 

corresponding estimated fluxes from the bidirectional models. 

The integrated flux is obtained using 

61 



- 
100 - 

- 
80 - 

60 - 

40 - 

20 - 

0 
1 

- 

. 0  0 .9  0.8 0 .7  0.6 0 .5  0 .4  0 . 3  0 .2 0 . 1  0 . 0  

COS (Viewing angle) 
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i -  1 

where Api - 0.1 and the last three values of Fi for p I 0.3 are 

extrapolated using a parabola as explained earlier. The estimated SW 

fluxes F a s t  are directly given in the ERBE data packages. As in the last 

section, data are from ERBS November 1984 and April 1985 and are taken 

on alternate days. 

First, a global comparison is made and mean values are calculated 

regardless of viewing angle and solar zenith angle. For 10 days in 

April, Fint  is 200 5 4 Wm-2 and F e S t  is 200 5 3 Wm-2 where the error is 

given by one standard deviation of the mean. For 10 days in November, 

Fint and Fes t  are respectively 219 5 4 Wm-2 and 228 5 3 These mean 

values do not have a physical significance since they do not take 

account of Sun position and equally weight overhead and oblique Sun 

cases. What is more relevant is the difference 

- 

- 

- - 
= Fint F e s t  (3.8) 

Because has low statistical noise and use of integrated radiances 

avoids the uncertainty of angular models, more confidence may be given 

to the integrated fluxes. Consequently, AF gives an indication of the 

reliability of the mean values of estimated fluxes since they are 

compared with the trusted integrated fluxes. For April, AF is 0 k 5 Wm-+ 

and for November AF is -9 f 5 Wm-2. At this point, it is important to 

note the significance of the standard error related to AF. With the 

sampling strategy used, the data for the radiance as well as for the 

estimated flux are considered as being independent but since I is 

collected at the same time as its corresponding value of Fes t  there is a 

67 



dependence of Fast on I. This means that when, for example, a single 

value of I is greater than the mean I, there is a high probability that 
its corresponding value of Felt will be greater than the mean Fest. It 
is then likely that the real error for AF is not simply the sum of the 

errors for Fint and F e s t .  For the study of AF, the standard error uAF is 

calculated assuming independent statistical data and is considered to be 

an upper limit to the real error for AF. Considering the previous 

experiment only, it would seem that AF is not far from zero and that, 

especially for April, confidence can also be given to the estimated SW 

fluxes. A more sophisticated comparison of Fine and Test  will show that 

this is not correct. 

- 

The same November and April data are now separated into 10 equal 

po bins. Figure 3.2.12 displays the values of AF against p o  for April. 

Error bars are shown having the same definition as before. The curve 

shows that AF has a clear tendency to be positive for p o  I 0.5 and 

negative for p o  50.5. In other words, the estimated fluxes tend to 

underestimate the integrated fluxes for smaller solar zenith angles and 

to overestimate them for the larger 8, values. The same curve for the 

November data is presented in Fig. 3.2.13 and has a similar shape except 

that AF changes sign near p,, - 0.7. 
A more detailed analysis can be done. In addition to the binning 

in p,, data are now divided into 7 equal p bins for 0.3 I p I 1.0 with 

Ap - 0.1. Figures 3.2.14 to 3.2.17 give the value of AF against p for 

four different Sun positions in April. The first figure (Fig. 3.2.14) is 

for overhead Sun (0.9 I p o  Il.0). It indicates that the integrated flux 

is larger than the estimated flux for small viewing angles and that the 
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best agreement between the two is for p - 0.5. The next figure 

(Fig. 3.2.15) is for 0.8 I p, I 0 . 9  and shows a similar trend except 

that AF is larger for small viewing angles. Again integrated and 

estimated fluxes are equal near p - 0.5. Values of AF corresponding to 
0.7 S p, I 0.8 and 0.6 I p, I 0.7 are not shown but also indicate that 

the best value of Felt compared with Fin is for p - 0.5. When 

0.5 I p, 10.6, AF is smaller and changes sign near p - 0.4 as shown in 
Fig. 3.2.16. For Sun positions corresponding to p, 10.4, AF is always 

negative, the closest value to zero being for nadir viewing. Figure 

3.2.17 gives an example showing the graph for 0.2 S p, 2 0.3. For the 

November data, we observe a similar behaviour of the difference AF. 

Figures 3.2.18 and 3.2.19 are for 0.8 I p, 2 0 . 9  and 0.6 I p, 5 0.7 

respectively during that month. 

From this analysis, it can be seen that the differences between 

integrated and estimated SW fluxes present much variability but have, in 

some cases, a tendency to decrease with increasing viewing angle (see 

Figs. 3.2.15 and 3.2.19). Furthermore, as the solar zenith angle becomes 

larger, this difference becomes negative for all viewing angles (e.g. 

Fig. 3.2.17). 

Another type of analysis was made that was inspired from 

Fig. 3.2.15 for April. In that figure, AF has a strong tendency to 

decrease with viewing angle. The analysis now consists of subdividing 

the data of April for 0.8 I p, I 0 . 9  according to the 12 different 

scene identification numbers defined in Section 1.3, and observing the 

behaviour of AF. A first analysis included every available viewing angle 
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FIG. 3.2.18 Same as Fig. 3.2.14 with data from ERBS November as in  

Fig. 3.2.13 and for  0.8 I p o  I 0 . 9 .  
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. 
in order to find a possible effect due to scene identification only. The 

results are presented in Fig. 3.2.20. The value of AF for scene type 3 ,  

"clear sky over snow", is zero since ERBS did not see this scene type in 

April. Results do not show an important dependence of AF on scene type. 

The values of AF are on each sides of the zero line and most of them are 

zero within a standard deviation of the mean. The maximum numbers of 

data, as one would expect, are for the ocean scenes. Figures 3 . 2 . 2 1  to 

3 . 2 . 2 4  present AF versus p for these four scenes i.e. clear ocean, 

partly and mostly cloudy over ocean and overcast. Even with the error 

bars which are overestimates of the statistical noise, the curves all 

show a tendency of AF to decrease with increasing 8 .  The overcast scene 

has the largest AF and shows the greatest variability in the data. 

In the previous analysis the number of data per scene 

identification number for each viewing angle bin was also calculated. It 

is interesting to note from that analysis that the percentage of the 

number of cloudy areas increases slightly with viewing angle while the 

percentage of clear scenes decreases. This is possible since the scanner 

instrument sees more of the cloud sides as it scans towards large 

viewing angles so that some scenes are classified having a higher 

cloudiness than the one observed at the target point. 

Table 3.2.1 shows the percentage of the total number of data used 

related to each scene type versus the viewing angle bin number, bin 

number 1 corresponding to nadir viewing, etc. Note that sampling was 

homogeneous over the Earth's surface within the latitude constraints of 

ERBS since, for all viewing angles, ocean scenes represent about 72% of 

the total data set considered, a value nearly equal to the percentage of 
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FIG. 3.2.23 Same as Fig. 3.2.21 for the mostly cloudy ocean case. 
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TABLE 3.2.1 Percentage of the total number of data for each scene 

type versus viewing angle. Data are from 10 days of ERBS April, 1985. 

Viewing angle bin number 1 is for nadir viewing. 

Viewing angle bin number 

Scene type 

Clear ocean 

Clear land 
Clear snow 
Clear desert 
Clear land-ocean mix 

Partly cloudy over ocean 
Partly cloudy over land or desert 

Partly cloudy over land-ocean mix 

Mostly cloudy over ocean 

Mostly cloudy over land or desert 
Mostly cloudy over land-ocean mix 
Over c as t 

Total land 
Total ocean 

1 2 3 4  5 6 7  

18 
4 
0 
3 

2 

24 
9 
3 

16 

7 
2 
12 

17 
4 
0 

3 
2 

25 

8 
2 

17 

7 
2 

13 

16 

4 
0 
3 
2 

27 
8 

2 

17 

7 
2 
12 

14 
4 
0 

3 
2 

27 
9 
2 

16 

8 
2 
13 

11 

3 
0 
3 
1 

29 
9 

2 

18 

8 

2 
14 

10 

3 
0 
3 
1 

30 

8 

2 

19 

7 
2 
15 

7 
2 

0 
3 
1 

32 
8 
2 

19 

8 

1 
17 

30 28 28 30 28 26 25 

70 72 72 70 72 74 75 
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the Earth’s surface covered by water. 

3.2.3 Estimated albedo 

The spatial and temporal variation of the absorbed SW radiation 

provided by the Sun drives the atmospheric and oceanic circulations. 

Because it gives the amount of this absorption, the albedo is an 

important climatological quantity and its value inferred from the ERBE 

scanner measurements is certainly worth calculating. The albedo is 

defined as 

P L a w  

(3.9) 

where FSw is the reflected SW flux, F, is the incident solar flux 

density, and again e, is the solar zenith angle. 

The results presented in this section are from 7 consecutive days 

of ERBS April 1985 data set. The albedo was calculated using the 

estimated SW fluxes given by the bidirectional models. The incident 

solar flux density in Wm-2 was calculated using the Earth-Sun distance d 

given in astronomical units such that 

1368 Wm- * 
d2 

Fo - (3.10) 

where 1368 Wm-? is the solar constant. This value was taken from Wen 

(1987) in order to compare some of his results. It is important to note 

that a temporal averaging of the albedo would require diurnal 

corrections (Smith et al., 1986) but for the purpose of studying the 
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variability of the data and its dependence on solar zenith and viewing 

angles, this procedure is not necessary. 

The data were divided according to p o  and p bins in the same way 

as in the previous sections : 10 po bins with Apo = 0.1 and 7 IJ.  bins 

with A p  = 0.1 for 0.3 I p Il.0 since no data are available for p 50.3. 

. Figure 3.2.25 shows the dependence of a on p for each of the 10 

solar zenith bins. The 10 curves are in order with respect to Sun 

position, the bottom curve corresponding to overhead Sun position while 

the top curve is for the near horizon Sun position. Error bars are given 

by one standard deviation of the mean. The value of the albedo 01 more 

than doubles from a near zenith Sun position to a near horizon Sun 

position. 

A general feature is that the albedo increases with viewing 

angle. The variation of a from nadir viewing to the most oblique viewing 

position is about 0.021 (or 10%) for overhead Sun and approximately 

0.114 (or 24%) for the near horizon Sun position. 

A mean value of a for all Sun positions is now calculated and 

plotted against p in Fig. 3.2.26. When averaging over solar zenith 

angle, u was weighted by p o  such that 

i -  1 - 
a -  

1 0  c p o i  A P O  
i- 1 

where the index i is for the 10 p o  bins, Apo = 0.1 and 

(3.11) 
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FIG. 3.2.25 Estimated albedo versus viewing angle for different Sun 

positions. The lower curve is for overhead Sun (0.9 5 p, I 1.0) and the 

upper curve is for near horizon Sun (0.0 5 po 50.1) with decreasing 

values of p, for curves in between. Data are from ERBS April the 16th to 

the 22"d, 1985. 
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1 
2 

1 0  c P o i  A P O  - - 
i =  1 

(3.12) 

The error bars are of the order of Aa = 0.003 indicating a good 

statistical behaviour. The values of a increase steadily with p from 

0.295 at nadir viewing to 0.334 at the largest viewing angle bin. This 

corresponds to a variation of 13% with viewing angle. 

3.2.4 Cloud-forcing over ocean 

The SW reflected and LW emitted radiation components of the 

planet depend on atmospheric conditions, cloudiness being one of them. 

As a matter of fact, the presence of clouds tends to increase the albedo 

so that the SW net flux reaching the ground is much less. But these same 

clouds will also tend to trap the LW emission of the surface and 

atmosphere, the lower clouds being considered as having a black-body 

behaviour. The radiation budget, which is defined as the difference 

between the incoming SW net flux and the outgoing LW net flux, can then 

possibly vary with cloudiness (c. f. Schneider, 1972; Ohring and Clapp, 

1980; Cess et al., 1982; Hartmann et al., 1986; Ramanathan, 1987). The 

net effect of this cloud-forcing is important to evaluate because it 

could have serious implications for global climate and general 

circulation models. 

In this section, the cloud-forcing is studied using only clear 

and overcast ocean radiation components and is defined as 

(3.13) 

where AFX = [(FOP, - FSW) - F l w I x  (3.14) 

F, and p o  being respectively the incident solar flux density and a mean 

CF = " c l o u d y  o c e a n  - " c l e a r  o c e a n  
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value of the cosine of solar zenith angle. Fa,, and F,,, are the reflected 

SW radiation and the LW emission at the top of the atmosphere. 

The data used are from the April 1985 ERBS data set, taking 

alternate days. The values of Fsw and Flw are given by the ERBE 

estimated SW and LW fluxes. As was discussed in the last section, these 

estimated fluxes are sometimes quite different from the integrated 

fluxes. Integrated fluxes are more accurate and are considered to be 

good values to take. The problem is that they must be calculated. 

Corrections given by the study presented in Section 3 . 2 . 3  were added to 

the estimated fluxes in order to get the values of the integrated ones 

while collecting only the raw value of estimated fluxes. Doing this 

removes the viewing angle dependence of these data. 

The fluxes were grouped by categories. For the LW, the estimated 

fluxes were binned according to 14 latitude bands of l o o  starting from 

the equator, and to 2 scene types; clear ocean and overcast ocean. 

Since, as we saw earlier, estimated LW fluxes are already very good, 

little correction was needed but was still taken into account. The SW 

fluxes are much more variable and need to be separated in a larger 

number of categories. They were classified'with the 10 usual p o  bins and 

7 p bins as well as with the same 14 latitude bins and 2 scene type bins 

used for the LW fluxes. Once the corrections are made for each category, 

the LW fluxes were ready to be used but the SW ones had to be averaged 

over viewing and solar zenith angles. Since, with the corrections 

applied to the estimated fluxes, the viewing angle dependence must 

disappear, an equal weighting in p was used. The averaging in p o  is more 

complicated. The mean value of Fsw for each latitude band and each scene 
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type was given using a weighting function o such that 

(3.15) 

where the index i is for the 10 solar zenith angle bins and A and ID 

refer to latitude and scene identification. The 0's were derived from 

theoretical calculations and represent the mean fraction of an April day 

during which the value of the cosine of solar zenith angle falls in one 

of the 10 p, bins. This is done for each of the 14 latitude bands so 

that o is really a 14x10 matrix. The procedure to calculate o is simple 

and will not be discussed here. The mean value of p, is calculated in 

the same manner yielding 

(3.16) 

and, with the value of F, defined as in the previous section, values of 

F,p,(h) can be computed. 
- 

Figure 3.2.27 shows the net radiation components for clear ocean. 

The incoming SW net flux is given by the + sign, the outgoing LW net 
flux by the o sign and the x sign represents AFclear Error bars 

are drawn but are very small because of the large number of data. The SW 

net flux is maximum in the northern hemisphere since results are for 

April when the mean solar declination is 10'. The LW net flux has a 

similar pattern to the curve in Fig. 3.1.4 (Section 3.1.2) with higher 

values of the fluxes because in this case cloudiness is restricted to be 

small (less than 5% for clear ocean). The radiation budget curve 

o c e a n  . 

i 
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resembles the SW net flux curve and is, as one would expect, positive at 

lower latitudes and negative at the higher ones. 

The same three curves for the overcast ocean are shown in 

Fig. 3.2.28. The SW net flux is much less than for the previous case 

since clouds increase the albedo. The LW net flux is also smaller but 

its cume is still symmetric with respect to the equator. In comparison 

with the clear ocean case, the radiation budget curve also reaches its 

maximum in the northern hemisphere but drops off faster towards the 

North Pole. 

Let us now define the SW and the LW forcing. As given earlier 

IC CF. u + CFlU (3.17) 

where cl stands for clear ocean and ov for overcast ocean. A negative CF 

indicates a decrease in the radiation budget when a clear sky becomes a 

completely cloudy sky over ocean and a positive CF implies an increase 

in the radiation budget. Figure 3.2.29 gives the values of CFSw and CFlW 

using respectively the + and o signs. The LW forcing presents a 

latitudinal symmetry with higher values at the equator where convective 

cloud tops are colder. The x curve presents the residual and real cloud- 

forcing versus latitude for the ocean in April. It is everywhere 

negative indicating that the presence of clouds has a cooling effect on 

the Earth-atmosphere system. 
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FIG. 3.2.27 SW and LW net fluxes over clear ocean versus latitude. 
The + sign is for incoming SW net flux, the o sign is for outgoing LW 
net flux and the x sign gives the radiation budget. Data are from ERBS 
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FIG. 3.2.28 Same as Fig. 3.2.27 for the overcast ocean case. 
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Chapter 4 

Conclusion 

Based on results from the ERBE scanner data it was found that the 

radiance measurements show a strong statistical dependence. A 

quantitative study of that dependence was conducted using a linear 

autocorrelation coefficient calculated for several separation distances 

between two scanner measurements. It was indeed found that two 

successive along- or across-track radiance measurements, separated by a 

distance of 27 kilometres, are so highly correlated that they show 

almost identical values. In order to obtain complete decorrelation, 

measurements must be separated by approximately two thousand kilometres. 

The fact that this distance is synoptic scale suggests that cloud 

patterns are responsible for the high correlations. On the other hand, 

no conclusion on climatology can really be made on the basis of the 

correlation study since correlation depends on the resolution of the 

instruments. The results of that study must be considered as specific 

properties of the ERBE data. 

The correlation study also showed that the along-track 

correlation coefficient depends on viewing angle. A possible explanation 

for this angle effect is the fact that, as the viewing angle increases 

up to 6 0 ° ,  the angular distribution function becomes more similar for 

various cloud shapes, increasing the similarity of the radiance 

measurements and hence the correlation. The increasing area viewed with 

viewing angle could also be part of the explanation but the angle effect 

takes place even for small values of the viewing angle where the 
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variation of the surface ratio is quite small. 

It was also observed that the along-track correlation for 

longwave radiation depends on latitude, reaching a maximum in both the 

north and south mid-latitudes. This observation also indicates the 

importance of climatology in the correlation of the data. Another 

general feature is the fact that the SW coefficients are always smaller 

than the LW coefficients for equal separation distances. This is not 

surprising because the SW reflected radiation depends on more degrees of 

freedom, namely cloud type and optical thickness, than the LW emitted 

radiation so that much variability is observed in the SW data. 

Since highly correlated data tend to give the same information, a 

sparse sampling strategy is suggested - that is, collection only of data 
that are separated by a certain physical distance on Earth. The 

decorrelation distance of two thousand kilometres should not be chosen 

since the autocorrelation coefficient does not present a sharp decrease, 

but tends smoothly towards zero and a good deal of information would be 

lost. It was decided to take the value d of the separation distance for 

which 

d 
, R(x) dx - - I O0 R(x) dx (4.1) 

0 2 0 

which is approximately 400 kilometres. Corresponding to that distance, a 

jump of 16 consecutive scanlines is made while collecting the data. They 

are afterwards treated like statistically independent data. 

Further research can still be made in that field with the ERBE 

data, particularly verifying the variations of the autocorrelation 
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coefficient with solar zenith angle using a much larger data set than 

for the results presented in this work. The latitudinal dependence for 

ERBS correlation as well as the NOAA-9 and -10 whole data sets are 

surely to be looked at with more care but for the purpose of finding a 

sampling procedure to avoid redundancy and save computer time and memory 

space, the present study should be sufficient. 

Radiances and estimated fluxes from two different months of ERBS 

data were studied using the suggested sampling strategy. Mean values of 

radiance versus viewing angle show a smooth behaviour with low 

statistical noise, giving high confidence to the values of the flux 

obtained by integrating these radiances, i.e. the integrated fluxes. 

When compared with the integrated fluxes the estimated fluxes tend to be 

larger at large viewing angles. This should not be the case. Similarly, 

the estimated albedo based on estimated fluxes also depends on viewing 

angle, increasing several percent from nadir to oblique viewing. Biases 

in the bidirectional models used to infer the estimated fluxes from the 

measured radiances could explain this behaviour. Dependence of estimated 

SW fluxes on solar zenith angle is observed as well, these fluxes being 

smaller than their corresponding integrated SW fluxes for near nadir Sun 

positions and much larger for oblique and near horizon Sun positions. 

Again, this feature may be due to the bidirectional models. 

The values of two important climatological quantities were 

derived from ERBS April 1985 data set. First, the estimated value of the 

global albedo for a week of April is near 31%, a value in agreement with 

the previous satellite observations (Hartmann et al., 1986). It is noted 
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. 
that the albedo reaches its maximum for a near horizon Sun position. 

Secondly, it was established that for the whole month of April 1985, the 

mean cloud-forcing over ocean is negative indicating a reduction of the 

radiation budget with increasing cloudiness over this scene type. For 

that month, the cloud-forcing can reach a minimum of about -100 Wm-2 

over ocean. 

Future work concerning cloud-forcing inferred from the ERBE data 

is still to be performed. An important study that should be considered 

is the comparison between the cloud-forcing calculated for the whole of 

the data for one month and the cloud-forcing obtained with the sparse 

sampling for that same month. Similar results would show the usefulness 

of this sampling strategy since the same answer could be obtained more 

rapidly. Different results could even identify the necessity of adopting 

a sparse sampling. As a matter of fact, using all the data available for 

a month in order to calculate a mean value could lead to a overweighting 

of certain categories of data since these data are highly correlated. 

Such a study could yield interesting results. 

Furthermore, similar studies of cloud-forcing over the different 

land scene types or for different months would be of interest. A study 

of such forcing for various Sun positions using the ERBE data would be a 

more sophisticated approach as would the correction for diurnal effects. 

This can be done more rapidly by applying the sampling strategy 

presented in this work since the large ERBE data volume could then be 

significantly reduced with little loss of information. 
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